论文标题

非线性波混沌系统中不对称传输的普遍性

Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems

论文作者

Wang, Cheng-Zhen, Kononchuk, Rodion, Kuhl, Ulrich, Kottos, Tsampikos

论文摘要

经典混乱系统的固有动力学复杂性实施了其波动类似物的传输特性的普遍描述。这些通用规则已在线性波传输的框架内建立,在该框架中省略了非线性相互作用,并使用随机矩阵理论(RMT)进行了描述。在这里,使用同轴电缆(图)的非线性复杂网络,我们在实验和理论上都在非线性相互作用和波浪混乱的相互作用上进行利用。我们开发了一般理论,这些理论描述了我们的不对称运输(AT)测量,其通用界限以及通过RMT的统计描述。这些由表征图的结构的结构不对称因子(SAF)控制。 SAF决定了强烈存在AT的不对称强度范围(空气)。与期望损失恶化的传统智慧相反,我们确定了(必要的)空气(AT)增加而不会恶化AT(空气)的条件。我们的研究启动了对非线性混沌系统波传输的普遍性的追求,并在设计无磁性隔离器的设计中具有潜在的应用。

The intrinsic dynamical complexity of classically chaotic systems enforces a universal description of the transport properties of their wave-mechanical analogues. These universal rules have been established within the framework of linear wave transport, where nonlinear interactions are omitted, and are described using Random Matrix Theory (RMT). Here, using a nonlinear complex network of coaxial cables (graphs), we exploit both experimentally and theoretically the interplay of nonlinear interactions and wave chaos. We develop general theories that describe our asymmetric transport (AT) measurements, its universal bound, and its statistical description via RMT. These are controlled by the structural asymmetry factor (SAF) characterizing the structure of the graph. The SAF dictates the asymmetric intensity range (AIR) where AT is strongly present. Contrary to the conventional wisdom that expects losses to deteriorate the transmittance, we identify (necessary) conditions for which the AIR (AT) increases without deteriorating the AT (AIR). Our research initiates the quest for universalities in wave transport of nonlinear chaotic systems and has potential applications for the design of magnetic-free isolators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源