论文标题
在四维Minkowski空间中的及时旋转表面的基本类别
Basic Classes of Timelike General Rotational Surfaces in the Four-dimensional Minkowski Space
论文作者
论文摘要
在本文中,我们考虑了Minkowski 4空间中的及时的一般旋转表面,该旋转表面与C. Moore引入的欧几里得4空间中的一般旋转表面相似。我们研究了两种类型的此类表面(分别具有及时的和空格的子午线曲线),并在分析上描述了它们的一些基本几何类别:平稳的及时的一般旋转表面,及时的固定旋转表面具有平坦的正常连接,以及及时的一般旋转表面,具有非零恒定恒定平均均值曲率。我们明确地给出了所有最小的及时的一般旋转表面和所有及时的一般旋转表面,并具有平行的归一化平均曲率矢量场。
In the present paper, we consider timelike general rotational surfaces in the Minkowski 4-space which are analogous to the general rotational surfaces in the Euclidean 4-space introduced by C. Moore. We study two types of such surfaces (with timelike and spacelike meridian curve, respectively) and describe analytically some of their basic geometric classes: flat timelike general rotational surfaces, timelike general rotational surfaces with flat normal connection, and timelike general rotational surfaces with non-zero constant mean curvature. We give explicitly all minimal timelike general rotational surfaces and all timelike general rotational surfaces with parallel normalized mean curvature vector field.