论文标题

$ {\ rm gl}(n,\ mathbb r)$的渐近正交关系

An Asymptotic Orthogonality Relation for ${\rm GL}(n, \mathbb R)$

论文作者

Goldfeld, Dorian, Stade, Eric, Woodbury, Michael

论文摘要

正交性是表示理论和傅立叶分析的基本主题。 Dirichlet使用有限的Abelian群体字符的正交关系(现在被认为是GL(1)上的正交关系)的正交关系,证明了算术进展中无限的许多素数。在过去的45年中,各种研究人员考虑了GL $(N)$的渐近正交关系,具有$ n \ le 3 $,以及数字理论的应用。最近,本工作的作者得出了一个明确的渐近正交关系,具有功率储蓄术语,对于gl $(4,\ mathbb r)$。在这里,我们将这些结果扩展到GL $(N,\ Mathbb R)$ $(N \ GE2)$。 对于$ n \ le 5 $,我们的结果是无条件的。特别是,$ n = 5 $代表了一个新结果。证明$ n = 5 $的证明的主要新成分是金 - 夏希迪定理,即在GL(2)$ \ times $ gl(3)上功能尖峰形式的产品在gl(6)上是自动形态的。对于$ n> 5 $,我们的结果是基于两个猜想的条件,两者在各种特殊情况下均已验证。这些猜想中的第一个涉及兰金·塞伯格(Rankin-Selberg)功能的下限,第二个猜测是gl $(n,\ mathbb r)$ whittaker功能的梅林转换的复发关系。我们的方法假设Ramanujan在无限位置的Maass Cusp形式的猜想,但是在我们的误差项中可以削弱此假设。 我们证明的核心是Kuznetsov痕量公式的应用,以及利用许多新型技术的详细分析,这些技术的各种实体 - Hecke-Maass Cusp形式,Langlands Eisenstein Esenstein系列,Spherical Principal Seripal Series系列Whittaker功能及其Mellin Transforms,以及在本应用程序中的ARIS。

Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on GL(1)) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Asymptotic orthogonality relations for GL$(n)$, with $n\le 3$, and applications to number theory, have been considered by various researchers over the last 45 years. Recently, the authors of the present work have derived an explicit asymptotic orthogonality relation, with a power savings error term, for GL$(4,\mathbb R)$. Here we we extend those results to GL$(n,\mathbb R)$ $(n\ge2)$. For $n\le 5$ our results are unconditional. In particular, the case $n=5$ represents a new result. The key new ingredient for the proof of the case $n=5$ is the theorem of Kim-Shahidi that functorial products of cusp forms on GL(2)$\times$GL(3) are automorphic on GL(6). For $n>5$ our results are conditional on two conjectures, both of which have been verified in various special cases. The first of these conjectures regards lower bounds for Rankin-Selberg L-functions, and the second concerns recurrence relations for Mellin transforms of GL$(n,\mathbb R)$ Whittaker functions. Our methods assume the Ramanujan conjecture at the infinite place for Maass cusp forms, but this assumption can be removed with a weakening in our error term. Central to our proof is an application of the Kuznetsov Trace formula, and a detailed analysis, utilizing a number of novel techniques, of the various entities -- Hecke-Maass cusp forms, Langlands Eisenstein series, spherical principal series Whittaker functions and their Mellin transforms, and so on -- that arise in this application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源