论文标题

高频纳米力学谐振器中的耗散光学力学

Dissipative Optomechanics in High-Frequency Nanomechanical Resonators

论文作者

Primo, André G., Pinho, Pedro V., Benevides, Rodrigo, Gröblacher, Simon, Wiederhecker, Gustavo S., Alegre, Thiago P. Mayer

论文摘要

微波和光学域之间信息的相干转导是未来量子网络的基本构建块。桥接这些广泛不同频率的一种有希望的方法是使用高频纳米力学谐振器与低损坏光学模式相互作用。最先进的光学机械依赖于纯粹的分散相互作用,这些相互作用被腔中大量光子种群增强。另外,可以使用耗散的光学力学,其中可以将光子直接从波导散射到谐振器中,从而增加了声学相互作用的控制程度。迄今为止,这种耗散的光力相互作用仅在低机械频率下才证明,排除了突出的应用,例如光子和语音域之间的量子状态转移。在这里,我们显示了在侧带分辨状态下运行的第一个耗散光机电系统,其中机械频率大于光线宽。在探索这种前所未有的制度时,我们证明了耗散光学耦合在重塑机械和光谱方面的影响。我们的数字代表了机械频率的两阶速度飞跃,与以前的工作相比,耗散性光学耦合速率增加了十倍。进一步的进步可以实现机械模式的个体处理,并有助于减轻光学机械设备中的光学非线性和吸收。

The coherent transduction of information between microwave and optical domains is a fundamental building block for future quantum networks. A promising way to bridge these widely different frequencies is using high-frequency nanomechanical resonators interacting with low-loss optical modes. State-of-the-art optomechanical devices rely on purely dispersive interactions that are enhanced by a large photon population in the cavity. Additionally, one could use dissipative optomechanics, where photons can be scattered directly from a waveguide into a resonator hence increasing the degree of control of the acousto-optic interplay. Hitherto, such dissipative optomechanical interaction was only demonstrated at low mechanical frequencies, precluding prominent applications such as the quantum state transfer between photonic and phononic domains. Here, we show the first dissipative optomechanical system operating in the sideband-resolved regime, where the mechanical frequency is larger than the optical linewidth. Exploring this unprecedented regime, we demonstrate the impact of dissipative optomechanical coupling in reshaping both mechanical and optical spectra. Our figures represent a two-order-of-magnitude leap in the mechanical frequency and a tenfold increase in the dissipative optomechanical coupling rate compared to previous works. Further advances could enable the individual addressing of mechanical modes and help mitigate optical nonlinearities and absorption in optomechanical devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源