论文标题

新兴的广义对称性和最大对称性阶

Emergent generalized symmetry and maximal symmetry-topological-order

论文作者

Chatterjee, Arkya, Ji, Wenjie, Wen, Xiao-Gang

论文摘要

无间隙液态的特性特性是其出现的对称性和双重对称性,分别与对称性电荷和对称缺陷的保护定律有关。这些在平等基础上考虑的保护定律不能简单地用一个群体的表示理论(或更高的群体)来描述。最好用一个在一个更高维度的拓扑顺序(TO)来描述它们。我们将其称为无间隙状态的聊天。因此,可以将其视为无间隙状态的指纹。我们建议,可以根据其最大的紧急介绍获得无处不在的状态的完全完整的表征,直到局部 - 低能等效性。在本文中,我们回顾了对称/拓扑级(SYMM/TO)对应关系,并提出了最大符号的精确定义。我们讨论各种示例来说明这些想法。我们发现1+1d ising临界点具有由2+1D双层拓扑秩序描述的最大主题。我们使用对称曲线在ISING临界点的确切可解决的模型中提供了该结果的推导。三态POTTS模型中的临界点具有双重(6,5)最小模型拓扑顺序的最大座。作为1+1D中非可逆对称性的一个例子,我们研究了具有新兴双菲比acci semto的斐波那契链的可能的无间隙状态。我们发现没有翻译对称性的斐波那ic链链与不间断的双Fibonacci Symto具有关键点。实际上,这样的批判理论具有双重(5,4) - 最小模型拓扑秩序的最大介绍。我们认为,在存在翻译对称性的情况下,上述临界点成为一个稳定的无间隙相,没有对称相关的操作员。

A characteristic property of a gapless liquid state is its emergent symmetry and dual symmetry, associated with the conservation laws of symmetry charges and symmetry defects respectively. These conservation laws, considered on an equal footing, can't be described simply by the representation theory of a group (or a higher group). They are best described in terms of a topological order (TO) with gappable boundary in one higher dimension; we call this the symTO of the gapless state. The symTO can thus be considered a fingerprint of the gapless state. We propose that a largely complete characterization of a gapless state, up to local-low-energy equivalence, can be obtained in terms of its maximal emergent symTO. In this paper, we review the symmetry/topological-order (Symm/TO) correspondence and propose a precise definition of maximal symTO. We discuss various examples to illustrate these ideas. We find that the 1+1D Ising critical point has a maximal symTO described by the 2+1D double-Ising topological order. We provide a derivation of this result using symmetry twists in an exactly solvable model of the Ising critical point. The critical point in the 3-state Potts model has a maximal symTO of double (6,5)-minimal-model topological order. As an example of a noninvertible symmetry in 1+1D, we study the possible gapless states of a Fibonacci anyon chain with emergent double-Fibonacci symTO. We find the Fibonacci-anyon chain without translation symmetry has a critical point with unbroken double-Fibonacci symTO. In fact, such a critical theory has a maximal symTO of double (5,4)-minimal-model topological order. We argue that, in the presence of translation symmetry, the above critical point becomes a stable gapless phase with no symmetric relevant operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源