论文标题
一个最小的B鬼
A minimal b ghost
论文作者
论文摘要
$ b $ ghost或$ b $运算符,用于在纯旋转超级场形式上固定siegel量规,是负面幽灵数字的复合操作员,满足$ \ {q,b \} = \ square $,其中$ q $是纯旋转器差异(BRST操作员)。传统上是使用非最小变量构建的。但是,由于所有共同体都具有最小的代表,因此似乎只有使用最小变量的物理上有意义的运算符也应该有有意义的运算符,也应该有负面的幽灵数。这封信的目的是证明这种说法可以通过在$ d = 10 $ super-yang-mills理论中提供具体的结构来证明,并认为这是纯旋转超级场外形式主义的一般特征。
The $b$ ghost, or $b$ operator, used for fixing Siegel gauge in the pure spinor superfield formalism, is a composite operator of negative ghost number, satisfying $\{q,b\}=\square$, where $q$ is the pure spinor differential (BRST operator). It is traditionally constructed using non-minimal variables. However, since all cohomology has minimal representatives, it seems likely that there should be versions of physically meaningful operators, also with negative ghost number, using only minimal variables. The purpose of this letter is to demonstrate that this statement holds by providing a concrete construction in $D=10$ super-Yang-Mills theory, and to argue that it is a general feature in the pure spinor superfield formalism.