论文标题

视觉CPG-RL:学习中心模式发生器,用于视觉引导的四倍运动

Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion

论文作者

Bellegarda, Guillaume, Shafiee, Milad, Ijspeert, Auke

论文摘要

我们提出了一个框架,用于通过整合外部感受感应和中心模式发生器(CPG),即耦合振荡器的系统,即进入深层增强学习(DRL)框架,以学习视觉引导的四足动物运动。通过外观感受和本体感知感应,代理商学会了协调不同振荡器之间的节奏行为以跟踪速度命令,同时越过这些命令以避免与环境发生冲突。我们研究了几种开放的机器人技术和神经科学问题:1)振荡器之间显式互动器耦合的作用是什么,并且这种耦合是否可以改善SIM到现实转移以实现导航稳健性? 2)在SIM到运行导航任务中,使用启用内存和无内存的策略网络在稳健性,能源效率和跟踪性能方面有什么影响? 3)动物如何忍受高感觉运动延迟,但仍会产生光滑而健壮的步态?为了回答这些问题,我们在模拟中训练我们的感知运动策略,然后对单位GO1进行SIM转移到四倍的转移,在各种情况下,我们观察到了强大的导航。我们的结果表明,CPG,明确的互隔开器耦合和支持内存的策略表示形式对能源效率,噪声延迟的稳健性和90毫秒的稳健性以及成功的SIM卡转移到导航任务的成功转移。视频结果可以在https://youtu.be/wpsbsmziwgm上找到。

We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to coordinate rhythmic behavior among different oscillators to track velocity commands, while at the same time override these commands to avoid collisions with the environment. We investigate several open robotics and neuroscience questions: 1) What is the role of explicit interoscillator couplings between oscillators, and can such coupling improve sim-to-real transfer for navigation robustness? 2) What are the effects of using a memory-enabled vs. a memory-free policy network with respect to robustness, energy-efficiency, and tracking performance in sim-to-real navigation tasks? 3) How do animals manage to tolerate high sensorimotor delays, yet still produce smooth and robust gaits? To answer these questions, we train our perceptive locomotion policies in simulation and perform sim-to-real transfers to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that the CPG, explicit interoscillator couplings, and memory-enabled policy representations are all beneficial for energy efficiency, robustness to noise and sensory delays of 90 ms, and tracking performance for successful sim-to-real transfer for navigation tasks. Video results can be found at https://youtu.be/wpsbSMzIwgM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源