论文标题
$ \ mathfrak p = \ mathfrak t $的理论证明
A Measure Theoretic Proof of $\mathfrak p=\mathfrak t$
论文作者
论文摘要
罗斯伯格(Rothberger)关于两个红衣主教$ \ mathfrak p $和$ \ mathfrak t $是否相同的问题,在1948年提出,最近才得到肯定的回答。在这里,我们回答何时可以将滤纸完善到塔式上时,在同一祖先问题上提出了更困难的祖细胞问题(在同一个地方提出)。同样导入的是,我们的证明$ \ mathfrak p = \ mathfrak t $解决了Gowers对原始解决方案的“证明路径”提出的问题。这将应用于获得超能力$ \ mathbb n^{\ mathbb n} \,/\,{\ mathcal u} $的差距频谱结果。
Rothberger's question of whether the two cardinals $\mathfrak p$ and $\mathfrak t$ are equal, posed back in 1948, was only answered fairly recently in the affirmative. Here we answer the more difficult progenitor question (posed in the same place) on when filter-bases can be refined to towers. Of equal import, our proof that $\mathfrak p=\mathfrak t$ addresses issues raised by Gowers concerning the "proof path" of the original solution. This is applied to obtain a gap spectrum result for the ultrapowers $\mathbb N^{\mathbb N}\,/\,{\mathcal U}$.