论文标题
KP-I方程的规律性低适当性:三维情况
Low regularity well-posedness of KP-I equations: the three-dimensional case
论文作者
论文摘要
在本文中,证明了kadomtsev-petviashvili的低规律性局部适应性结果 - 我在空间尺寸中提出的方程式$ d = 3 $。考虑了周期性,非周期性和混合环境以及广义分散关系。在弱分散体制中,这些初始值问题显示出准线性行为,因此在分析中使用了双线性和能量估计。
In this paper, low regularity local well-posedness results for the Kadomtsev--Petviashvili--I equation posed in spatial dimension $d =3$ are proved. Periodic, non-periodic and mixed settings as well as generalized dispersion relations are considered. In the weak dispersion regime, these initial value problems show a quasilinear behavior so that bilinear and energy estimates on frequency dependent time scales are used in the analysis.