论文标题

$ f $ -zips具有Shimura品种拆分模型的其他结构

$F$-zips with additional structure on splitting models of Shimura varieties

论文作者

Shen, Xu, Zheng, Yuqiang

论文摘要

我们在Pel-type Shimura品种的Pappas-Roport拆分型号的良好减少下构建通用$ G $ -ZIPS。我们研究了诱导的ekedahl-oort分层,该分层介绍了对分裂模型的mod $ p $几何形状的新灯。在LAN在分裂模型的算术压缩上的工作的基础上,我们进一步将这些结构扩展到平滑的环形压缩。再加上Goldring-Koskivirta在组理论哈斯不变的情况下的工作,我们在分支机构中的相干同胞中与扭转类相关的GALOIS表示。

We construct universal $G$-zips on good reductions of the Pappas-Rapoport splitting models for PEL-type Shimura varieties. We study the induced Ekedahl-Oort stratification, which sheds new light on the mod $p$ geometry of splitting models. Building on the work of Lan on arithmetic compactifications of splitting models, we further extend these constructions to smooth toroidal compactifications. Combined with the work of Goldring-Koskivirta on group theoretical Hasse invariants, we get an application to Galois representations associated to torsion classes in coherent cohomology in the ramified setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源