论文标题

叶状高原问题和表面亚组的渐近计数

Foliated Plateau problems and asymptotic counting of surface subgroups

论文作者

Alvarez, Sébastien, Lowe, Ben, Smith, Graham

论文摘要

在[17]中,Labourie启动了$ k $ - 曲面空间的动力学特性的研究,也就是说,在$ 3 $ 3 $维的歧管中,合适的完整浸入式浸入式表面持续不断的外部曲率表面,当他以较高的二维类模拟时,当Ambient流形的情况下,他将其作为较高的二维类似物表现出来。在本文中,在Calegari-Marques的最新工作[5]之后,我们研究了表面亚组的渐近计数,从$ k $ surfaces的面积来看。我们确定一个下限,并在实现这种界限时证明了刚性。我们的工作在两个关键方面与[5]的作品不同。首先,我们与所有准富奇西亚的亚组合作,而不是渐近的紫红色亚组。其次,随着[5]中的刚性证明在当前情况下破裂,我们需要采取不同的方法。遵循Labourie在[19]中概述的想法之后,我们通过解决cartan的普通高原问题(Hadamard歧管)来证明刚性。为此,我们基于Labourie的$ k $ -surface Dynamics的理论,并提出了许多新的结构,猜想和问题。

In [17], Labourie initiated the study of the dynamical properties of the space of $k$-surfaces, that is, suitably complete immersed surfaces of constant extrinsic curvature in $3$-dimensional manifolds, which he presented as a higher-dimensional analogue of the geodesic flow when the ambient manifold is negatively curved. In this paper, following the recent work [5] of Calegari--Marques--Neves, we study the asymptotic counting of surface subgroups in terms of areas of $k$-surfaces. We determine a lower bound, and we prove rigidity when this bound is achieved. Our work differs from that of [5] in two key respects. Firstly, we work with all quasi-Fuchsian subgroups as opposed to merely asymptotically Fuchsian ones. Secondly, as the proof of rigidity in [5] breaks down in the present case, we require a different approach. Following ideas outlined by Labourie in [19], we prove rigidity by solving a general foliated Plateau problem in Cartan--Hadamard manifolds. To this end, we build on Labourie's theory of $k$-surface dynamics, and propose a number of new constructions, conjectures and questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源