论文标题

关于$φ$ -laplacian的差异不平等解决方案的爆破条件

On blow-up conditions for solutions of differential inequalities with $φ$-Laplacian

论文作者

Kon'kov, A. A.

论文摘要

让$ω\ ne \ emptySet $为$ {\ mathbb r}^n $,$ n \ ge 2 $的无界开放子集。我们获得了问题$$的非负解决方案的爆炸条件 {\ Mathcal L}_φU \ ge F(x,u) \ Quad \ mbox {in} ω, \ Quad \左边。 你 \ right | _ { \部分ω } = 0,$$,其中$φ$和$ f $是某些功能和$$ {\ Mathcal L}_φU = \ operatorname {div} \左边( \ frac { φ(| \ nabla u |) } { | \ nabla u | } \ nabla u \ right)$$是$φ$ -laplace运算符。

Let $Ω\ne \emptyset$ be an unbounded open subset of ${\mathbb R}^n$, $n \ge 2$. We obtain blow-up conditions for non-negative solutions of the problem $$ {\mathcal L}_φu \ge F (x, u) \quad \mbox{in } Ω, \quad \left. u \right|_{ \partial Ω } = 0, $$ where $φ$ and $F$ are some function and $$ {\mathcal L}_φu = \operatorname{div} \left( \frac{ φ(|\nabla u|) }{ |\nabla u| } \nabla u \right) $$ is the $φ$-Laplace operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源