论文标题
关于核短距离相关性和Schrodinger方程的零能量
On nuclear short-range correlations and the zero-energy eigenstates of the Schrodinger equation
论文作者
论文摘要
我们提出了对核2和3体短距离相关性的系统分析,及其与Schrodinger方程的零能量特征态的关系。为此,我们在高动量极限下分析了双重和三重态耦合群集振幅,并表明它们遵守核子数量及其状态的数量无关。此外,我们发现这些耦合群集振幅与零能量的Bloch-Horowitz操作员一致。这些结果阐明了核多体理论与广义接触形式主义之间的关系,该理论描述了核2体短距离相关性,并且由于振幅的渐近部分被给予并显示为通用,这对于一般耦合群集计算也可能有帮助。
We present a systematic analysis of the nuclear 2 and 3-body short range correlations, and their relations to the zero-energy eigenstates of the Schrodinger equation. To this end we analyze the doublet and triplet Coupled-Cluster amplitudes in the high momentum limit, and show that they obey universal equations independent of the number of nucleons and their state. Furthermore, we find that these Coupled-Cluster amplitudes coincide with the zero-energy Bloch-Horowitz operator. These results illuminate the relations between the nuclear many-body theory and the generalized contact formalism, introduced to describe the nuclear 2-body short range correlations, and it might also be helpful for general Coupled-Cluster computations as the asymptotic part of the amplitudes is given and shown to be universal.