论文标题
通过幻影研究对原型进行全面视野光子计数CT系统的全面评估
Comprehensive evaluations of a prototype full field-of-view photon counting CT system through phantom studies
论文作者
论文摘要
在过去的二十年中,光子计数CT(PCCT)一直是研究重点。最近的研究和进步表明,与常规的基于闪烁体的系统相比,使用基于半导体的光子计数检测器(PCD)的系统具有更好的对比度,噪声和空间分辨率性能。通过多能阈值检测,PCD可以同时提供光子能量测量,并使材料分解用于光谱成像。在这项工作中,我们通过各种幻影成像研究报告了我们的第一个基于CDZNTE的原型全尺寸光子计数CT系统的性能评估。该原型系统支持在同中心的500毫米扫描视野(FOV)和10毫米圆锥覆盖范围。使用120 kVP从50到400 MAS进行幻影扫描,以评估:CT数量准确性,均匀性,噪声,空间分辨率,材料分化和定量的成像性能。定性评估和定量评估都表明,与常规能量整合检测器(EID)-CT相比,PCCT具有较低的噪声成像性能,并改善了空间分辨率。使用投影域的材料分解方法和多个能量箱测量值,PCCT虚拟单声工图像(VMI)具有较低的噪声,并且在量化碘和钙浓度方面具有出色的性能。与EID-CT相比,这些改进导致高和低对比度研究对象的对比度与噪声比率增加。 PCCT还可以使用比EID-CT小得多的检测器像素大小生成超高分辨率(SHR)图像,并显着改善图像空间分辨率。
Photon counting CT (PCCT) has been a research focus in the last two decades. Recent studies and advancements have demonstrated that systems using semiconductor-based photon counting detectors (PCDs) have the potential to provide better contrast, noise and spatial resolution performance compared to conventional scintillator-based systems. With multi-energy threshold detection, PCD can simultaneously provide the photon energy measurement and enable material decomposition for spectral imaging. In this work, we report a performance evaluation of our first CdZnTe-based prototype full-size photon counting CT system through various phantom imaging studies. This prototype system supports a 500 mm scan field-of-view (FOV) and 10 mm cone coverage at isocenter. Phantom scans were acquired using 120 kVp from 50 to 400 mAs to assess the imaging performance on: CT number accuracy, uniformity, noise, spatial resolution, material differentiation and quantification. Both qualitative and quantitative evaluations show that PCCT has superior imaging performance with lower noise and improved spatial resolution compared to conventional energy integrating detector (EID)-CT. Using projection domain material decomposition approach with multiple energy bin measurements, PCCT virtual monoenergetic images (VMIs) have lower noise, and superior performance in quantifying iodine and calcium concentrations. These improvements lead to increased contrast-to-noise ratio (CNR) for both high and low contrast study objects compared to EID-CT. PCCT can also generate super-high resolution (SHR) images using much smaller detector pixel size than EID-CT and dramatically improve image spatial resolution.