论文标题

子区域二元性二元性:全息图中的空间和时间的出现

Subregion-subalgebra duality: emergence of space and time in holography

论文作者

Leutheusser, Samuel, Liu, Hong

论文摘要

在全息二元性中,较高的维量子重力系统来自较低的尺寸共形场理论(CFT),并具有大量的自由度。我们提出了一种称为子区域 - 毛细血管双重性的一般性完整的散装时空区域的二元性表述,该区域提供了一个框架来描述重力系统中的几何概念如何,例如时空子区域,不同的时间概念,以及不同的因果结构,以及来自双重CFT的因果关系。子区域二元性二元性概括并带来新的见解,以对次区域二元性(或等效地纠缠楔形重建)。它在数学上提供了亚区域双重性二元性的精确定义,并在不使用熵的情况下对纠缠楔子进行了独立的定义。纠缠楔的几何特性,包括那些在解释批量误差校正代码中起着至关重要的作用的楔形楔形物,可以从二元性中理解为某些代数的超级作用的几何化。使用一般的边界亚级别,而不是与几何子区域相关的边界,这使得可以找到一般散装时空区域的偶,包括那些没有接触边界的二元。在描述单面黑洞的边界状态下,将子区域 - 甲板二元性应用于二面的边界状态,也提供了定义镜像运算符的精确方法。

In holographic duality, a higher dimensional quantum gravity system emerges from a lower dimensional conformal field theory (CFT) with a large number of degrees of freedom. We propose a formulation of duality for a general causally complete bulk spacetime region, called subregion-subalgebra duality, which provides a framework to describe how geometric notions in the gravity system, such as spacetime subregions, different notions of times, and causal structure, emerge from the dual CFT. Subregion-subalgebra duality generalizes and brings new insights into subregion-subregion duality (or equivalently entanglement wedge reconstruction). It provides a mathematically precise definition of subregion-subregion duality and gives an independent definition of entanglement wedges without using entropy. Geometric properties of entanglement wedges, including those that play a crucial role in interpreting the bulk as a quantum error correcting code, can be understood from the duality as the geometrization of the superadditivity of certain algebras. Using general boundary subalgebras rather than those associated with geometric subregions makes it possible to find duals for general bulk spacetime regions, including those not touching the boundary. Applying subregion-subalgebra duality to a boundary state describing a single-sided black hole also provides a precise way to define mirror operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源