论文标题

概率活动驱动的时间简单网络及其在高阶动力学上的应用

Probabilistic activity driven model of temporal simplicial networks and its application on higher-order dynamics

论文作者

Han, Zhihao, Liu, Longzhao, Wang, Xin, Hao, Yajing, Zheng, Hongwei, Tang, Shaoting, Zheng, Zhiming

论文摘要

网络建模表征结构特性的基本原理,对于模拟现实世界中的动态过程至关重要。但是,由于实际系统中的多重复杂性,桥接结构和动态总是具有挑战性的。在这里,通过介绍个人的活动率和群体相互作用的可能性,我们提出了一个概率活动驱动的模型(PAD)模型,该模型可以生成具有功率和高簇特性的时间高阶网络,该网络在广泛的复合系统中成功地链接了两个最关键的结构特征和基本动力学模式。令人惊讶的是,可以通过更改一组模型参数来调整聚合垫网络的幂律指数和聚合网络的聚类系数。我们进一步提供了一种近似算法,以选择可以生成具有给定结构属性的网络的正确参数,该参数通过拟合各种现实世界网络来验证其有效性。最后,我们探讨了PAD模型和高阶触发动力学的共同进化,并在分析中得出了相变和可行现象的关键条件。我们的模型提供了一个基本的工具,可以重现复杂的结构特性并研究广泛的高阶动态,该动态具有巨大的跨场应用潜力。

Network modeling characterizes the underlying principles of structural properties and is of vital significance for simulating dynamical processes in real world. However, bridging structure and dynamics is always challenging due to the multiple complexities in real systems. Here, through introducing the individual's activity rate and the possibility of group interaction, we propose a probabilistic activity driven (PAD) model that could generate temporal higher-order networks with both power-law and high-clustering characteristics, which successfully links the two most critical structural features and a basic dynamical pattern in extensive complex systems. Surprisingly, the power-law exponents and the clustering coefficients of the aggregated PAD network could be tuned in a wide range by altering a set of model parameters. We further provide an approximation algorithm to select the proper parameters that can generate networks with given structural properties, the effectiveness of which is verified by fitting various real-world networks. Lastly, we explore the co-evolution of PAD model and higher-order contagion dynamics, and analytically derive the critical conditions for phase transition and bistable phenomenon. Our model provides a basic tool to reproduce complex structural properties and to study the widespread higher-order dynamics, which has great potential for applications across fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源