论文标题

费米子分数量子厅陈述:一种具有散装对应系统的系统的现代方法

Fermionic fractional quantum Hall states: A modern approach to systems with bulk-edge correspondence

论文作者

Fukusumi, Yoshiki, Yang, Bo

论文摘要

在当代物理学中,尤其是在凝结物理学中,费米子拓扑顺序及其受保护的边缘模式是最重要的对象之一。在这项工作中,我们提出了与费米子分数量子霍尔效应(FQHE)相对应的圆柱分区的系统构造,并提出了获得受保护边缘模式的候选物的一般机制。在我们的构造中,当基础的共形场理论具有$ z_ {2} $二元性缺陷,与费米子$ z_ {2} $电动粒子相对应时,我们表明FQH分区函数具有费米子T二重性。这种二元性类似于(希望与)双重共振模型(通常称为超对称性)中的二元性,并给出对拓扑阶段的重新归一化组(RG)理论的理解。我们还介绍了对散装拓扑变性和拓扑纠缠熵的现代理解。这种理解是基于传统的隧道问题以及最新的构想,对批量重新归一化群体流动与边界形成域理论之间的对应关系。我们的形式主义在传统的RG和费米化语言中对拓扑有序系统的现代物理学有直观和一般的理解。

In contemporary physics, especially in condensed matter physics, fermionic topological order and its protected edge modes are one of the most important objects. In this work, we propose a systematic construction of the cylinder partition corresponding to the fermionic fractional quantum Hall effect (FQHE) and a general mechanism for obtaining the candidates of the protected edge modes. In our construction, when the underlying conformal field theory has the $Z_{2}$ duality defects corresponding to the fermionic $Z_{2}$ electric particle, we show that the FQH partition function has a fermionic T duality. This duality is analogous to (hopefully the same as) the dualities in the dual resonance models, typically known as supersymmetry, and gives a renormalization group (RG) theoretic understanding of the topological phases. We also introduce a modern understanding of bulk topological degeneracies and topological entanglement entropy. This understanding is based on the traditional tunnel problem and the recent conjecture of correspondence between the bulk renormalization group flow and the boundary conformal field theory. Our formalism gives an intuitive and general understanding of the modern physics of the topologically ordered systems in the traditional language of RG and fermionization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源