论文标题
空间和偏振分层多路复用片上的光束形成
Spatial and polarization division multiplexing harnessing on-chip optical beam forming
论文作者
论文摘要
片上的空间和偏振化多路复用已成为提高集成光学收发器带宽的强大策略。最新的多路复用器需要准确控制不同引导光学模式之间的相对相或空间分布,从而严重损害了设备的带宽和性能。为了克服这一局限性,我们提出了一种基于集成波导和光束在芯片平面上自由传播的指导模式之间的耦合的新方法。引导模式与自由传播光束之间的渐态耦合的工程可以通过最新性能进行空间和极化多路复用。为了证明这种方法的潜在和多功能性,我们使用了标准的220 nm厚度硅技术技术开发了两极化的多路复用链路和三模多路复用的链接。两极化链路显示了180 nm的-35 dB串扰带宽,而三模式链路则显示-20 dB串扰带宽为195 nm。这些带宽涵盖了S,C,L和U通信带。我们使用这些链接以每个40 Gbps的两个非返回到零信号证明了无错误的传输(比特率<10-9),分别针对两极化和三模式链接的功率惩罚低于0.08 dB和1.5 dB。此处证明的两种极化和三种模式的方法也适用于将来实施更复杂的多路复用方案。
On-chip spatial and polarization multiplexing have emerged as a powerful strategy to boost the bandwidth of integrated optical transceivers. State-of-the-art multiplexers require accurate control of the relative phase or the spatial distribution among different guided optical modes, seriously compromising the bandwidth and performance of the devices. To overcome this limitation, we propose a new approach based on the coupling between guided modes in integrated waveguides and optical beams free-propagating on the chip plane. The engineering of the evanescent coupling between the guided modes and free-propagating beams allows spatial and polarization multiplexing with state-of-the-art performance. To demonstrate the potential and versatility of this approach, we have developed a two-polarization multiplexed link and a three-mode multiplexed link using standard 220-nm-thick silicon-on-insulator technology. The two-polarization link shows a measured -35 dB crosstalk bandwidth of 180 nm, while the three-mode link exhibits a -20 dB crosstalk bandwidth of 195 nm. These bandwidths cover the S, C, L, and U communication bands. We used these links to demonstrate error-free transmission (bit-error-rate < 10-9) of two and three non-return-to-zero signals at 40 Gbps each, with power penalties below 0.08 dB and 1.5 dB for the two-polarization and three-mode links respectively. The approach demonstrated here for two polarizations and three modes is also applicable to future implementation of more complex multiplexing schemes.