论文标题
无锁的不连续的Galerkin方法,用于线性弹性steklov特征值问题
A locking-free discontinuous Galerkin method for linear elastic Steklov eigenvalue problem
论文作者
论文摘要
在本文中,提出了线性弹性中的nitsche版本的不连续的galerkin有限元方法。在较低的规律性条件下分析了A先验误差估计,并且证明了相对于几乎不可压缩的材料(无锁定)的鲁棒性。此外,据报道,一些数值实验显示了所提出方法的有效性和鲁棒性。
In this paper, a discontinuous Galerkin finite element method of Nitsche's version for the Steklov eigenvalue problem in linear elasticity is presented. The a priori error estimates are analyzed under a low regularity condition, and the robustness with respect to nearly incompressible materials (locking-free) is proven. Furthermore, some numerical experiments are reported to show the effectiveness and robustness of the proposed method.