论文标题

优化基于芯片SBS的隔离器的性能

Optimizing performance for on-chip SBS-based isolator

论文作者

Lai, Choon Kong, Merklein, Moritz, Bedoya, Alvaro Casas, Liu, Yang, Madden, Stephen J., Poulton, Christopher G., Steel, Michael J., Eggleton, Benjamin J.

论文摘要

诸如隔离器和循环器之类的非转录光学组件对于防止光子系统中的灾难性反射和控制光学串扰至关重要。尽管在芯片尺度平台中已经在实验中证明了基于布里素模式过渡的非重新磁管设备,但利用这种相互作用需要悬挂的波导结构,这对伪造而有挑战性,并且可能比非震动的结构较不强大,从而限制了设计灵活性。在本文中,我们从数值上研究了基于布里鲁因的隔离方案的性能,其中双泵驱动的光声相互作用用于激发传统的山脊波导中的狭窄声波。我们发现,可以通过选择适当的光学模式对和两个基于砷的基于砷的硫化硫化硫化剂平台的光学模式对和波导几何形状来增强声学限制以及布里鲁因驱动模式转换的量。此外,我们全面优化了隔离器设计,包括输入耦合器,模式过滤器,Brillouin-Active波导以及设备的制造公差。我们预测,当使用500兆瓦泵功率时,这种设备可以在38 nm带宽上实现30 dB的隔离。在存在+/- 10 nm制造引起的宽度误差的情况下,可以在5-10 nm的带宽上保持这种隔离。

Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic back-reflection and controlling optical crosstalk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a +/- 10 nm fabrication-induced width error, such isolation can be maintained over a 5-10 nm bandwidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源