论文标题
基于参数化的神经网络:预测复合材料的非线性应力应变响应
Parameterization-based Neural Network: Predicting Non-linear Stress-Strain Response of Composites
论文作者
论文摘要
诸如句法泡沫之类的复合材料具有复杂的内部微观结构,由于从空心区域发生的材料不连续性以及嵌入在连续培养基中的空心颗粒或微功能的薄壁,表现出高压力的浓度。从其微观结构中预测机械响应是此类异质材料的非线性应力 - 应变曲线是一个挑战性的问题。这是正确的,因为各种参数(包括微气囊的分布和几何特性)决定了它们对机械载荷的响应。为此,本文提出了一个新型的神经网络(NN)框架,称为基于参数化的神经网络(PBNN),在其中我们通过此训练有素的NN模型将复合微结构与非线性响应联系起来。 PBNN表示应力 - 应变曲线作为参数化函数,以减少预测大小并预测不同句法泡沫微结构的功能参数。我们表明,与本文考虑的几种常见的基线模型相比,PBNN可以准确预测非线性应力 - 应变响应以及使用较小的数据集的相应参数化函数。通过从几何数据中提取高级特征并通过辅助术语预测来调整预测响应来启用这一点。尽管建立在句法泡沫复合材料的压缩响应预测的背景下,但我们的NN框架适用于预测具有内部微观结构的异质材料的通用非线性响应。因此,我们的新型PBNN预计会激发不同机器学习方法中与参数化相关的更多研究。
Composite materials like syntactic foams have complex internal microstructures that manifest high-stress concentrations due to material discontinuities occurring from hollow regions and thin walls of hollow particles or microballoons embedded in a continuous medium. Predicting the mechanical response as non-linear stress-strain curves of such heterogeneous materials from their microstructure is a challenging problem. This is true since various parameters, including the distribution and geometric properties of microballoons, dictate their response to mechanical loading. To that end, this paper presents a novel Neural Network (NN) framework called Parameterization-based Neural Network (PBNN), where we relate the composite microstructure to the non-linear response through this trained NN model. PBNN represents the stress-strain curve as a parameterized function to reduce the prediction size and predicts the function parameters for different syntactic foam microstructures. We show that compared to several common baseline models considered in this paper, the PBNN can accurately predict non-linear stress-strain responses and the corresponding parameterized functions using smaller datasets. This is enabled by extracting high-level features from the geometry data and tuning the predicted response through an auxiliary term prediction. Although built in the context of the compressive response prediction of syntactic foam composites, our NN framework applies to predict generic non-linear responses for heterogeneous materials with internal microstructures. Hence, our novel PBNN is anticipated to inspire more parameterization-related studies in different Machine Learning methods.