论文标题
(不)在双曲空间上行动的组
Groups that (do not) act isometrically on hyperbolic spaces
论文作者
论文摘要
在本文中,我们表明,如果一个小组通过非纤维化动作在有限体积熵的良好双曲线空间上行动,那么它承认对一些$ l^p $ - 空间的仿射动作,并带有无绑定的轨道,以提供足够大的$ p $。作为一个应用程序,我们证明了一个具有固定点属性$ f_ \ infty $在良好双曲线空间上的组的等轴测操作都必须具有有限的轨道。
In this paper, we show that if a group acts isometrically on a good hyperbolic space of finite volume entropy through a non-elementary action, then it admits an affine action on some $L^p$ -space with an unbounded orbit for sufficiently large $p$. As an application, we prove that any isometric action of a group with the fixed point property $F_\infty$ on a good hyperbolic space must have a bounded orbit.