论文标题

分析电子结构计算的单个参考耦合群集方法:完整的耦合群集方程

Analysis of the Single Reference Coupled Cluster Method for Electronic Structure Calculations: The Full Coupled Cluster Equations

论文作者

Hassan, Muhammad, Maday, Yvon, Wang, Yipeng

论文摘要

电子结构理论中的中心问题是计算电子汉密尔顿的特征值 - 一个无界的,自动化的操作员,作用于反对称函数的希尔伯特空间。耦合群集(CC)方法基于对特征功能后的非线性参数化,并导致方程式非线性系统,是高精度量子化学仿真的选择方法,但其数值分析尚未开发。现有的数值分析依赖于CC函数的局部,强的单调性属性,该函数仅在扰动状态下有效,即当备受追求的基态CC解决方案足够接近零时。在本文中,我们介绍了基于CC衍生物的可逆性的单个参考耦合聚类方法的新适应性分析。在最低限度的假设中,备受追求的特征功能是可以正常的,并且相关的特征值是孤立的且非分类的,我们证明连续(无限二维)CC方程始终是本地供应良好的。在相同的最小假设下,并且只要离散化足够好,我们就证明了离散的Full-CC方程是局部良好的,并且我们通过保证的正常数得出了基于剩余的错误估计。初步数值实验表明,在我们估计中出现的常数比从局部单调性方法获得的常数有了显着改善。

The central problem in electronic structure theory is the computation of the eigenvalues of the electronic Hamiltonian -- an unbounded, self-adjoint operator acting on a Hilbert space of antisymmetric functions. Coupled cluster (CC) methods, which are based on a non-linear parameterisation of the sought-after eigenfunction and result in non-linear systems of equations, are the method of choice for high accuracy quantum chemical simulations but their numerical analysis is underdeveloped. The existing numerical analysis relies on a local, strong monotonicity property of the CC function that is valid only in a perturbative regime, i.e., when the sought-after ground state CC solution is sufficiently close to zero. In this article, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretisation is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants. Preliminary numerical experiments indicate that the constants that appear in our estimates are a significant improvement over those obtained from the local monotonicity approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源