论文标题

第二种基本形式的平方标准的临界点的非依赖性,具有最小边界的歧管

Non-degeneracy of critical points of the squared norm of the second fundamental form on manifolds with minimal boundary

论文作者

Cruz-Blázquez, Sergio, Pistoia, Angela

论文摘要

令$(m,\ bar g)$是一种紧凑的riemannian歧管,具有最小的边界,因此第二个基本形式在$ \ partial m $上无处可消失。我们表明,对于通用的Riemannian度量$ \ bar g $,第二个基本形式的平方规范是摩尔斯的功能,即其所有关键点都是非分类的。我们表明,当我们将自己限制为$ m $的初始度量标准的共形类别时,该物业的一般性就存在。

Let $(M,\bar g)$ be a compact Riemannian manifold with minimal boundary such that the second fundamental form is nowhere vanishing on $\partial M$. We show that for a generic Riemannian metric $\bar g$, the squared norm of the second fundamental form is a Morse function, i.e. all its critical points are non-degenerate. We show that the generality of this property holds when we restrict ourselves to the conformal class of the initial metric on $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源