论文标题

fdesolver:用于求解分数微分方程的朱莉娅包装

FdeSolver: A Julia Package for Solving Fractional Differential Equations

论文作者

Khalighi, Moein, Benedetti, Giulio, Lahti, Leo

论文摘要

实施和执行数值算法来求解分数差分方程的问题与使用整数阶阶相比,对希望在应用案例研究中纳入分数计算的从业人员构成了挑战。因此,我们创建了一个开源朱莉娅包FDesolver,该软件包为基于产品集成规则,预测器 - 核能算法和牛顿 - 拉夫森方法提供了分数阶微分方程的数值解决方案。该软件包涵盖了具有正实数顺序的一维方程的解决方案。对于高维系统,正实数的顺序仅限于(等于)。允许和定义不可压力的衍生物。在这里,我们总结了代表性问题类别的实施,提供了与朱莉娅和Matlab的可用替代方案的比较,描述了我们对开放研究软件开发中的良好实践的遵守,并证明了两种应用中这些方法的实际性能;我们展示了如何通过基于流行病学观察的衍生物顺序拟合衍生物的顺序来模拟微生物群落动力学并建模Covid-19的传播。总体而言,这些结果突出了Fdesolver Julia包的效率,可靠性和实用性。

Implementing and executing numerical algorithms to solve fractional differential equations has been less straightforward than using their integer-order counterparts, posing challenges for practitioners who wish to incorporate fractional calculus in applied case studies. Hence, we created an open-source Julia package, FdeSolver, that provides numerical solutions for fractional-order differential equations based on product-integration rules, predictor-corrector algorithms, and the Newton-Raphson method. The package covers solutions for one-dimensional equations with orders of positive real numbers. For high-dimensional systems, the orders of positive real numbers are limited to less than (and equal to) one. Incommensurate derivatives are allowed and defined in the Caputo sense. Here, we summarize the implementation for a representative class of problems, provide comparisons with available alternatives in Julia and Matlab, describe our adherence to good practices in open research software development, and demonstrate the practical performance of the methods in two applications; we show how to simulate microbial community dynamics and model the spread of Covid-19 by fitting the order of derivatives based on epidemiological observations. Overall, these results highlight the efficiency, reliability, and practicality of the FdeSolver Julia package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源