论文标题
表面扩散的独特性和稳定性原理
A uniqueness and stability principle for surface diffusion
论文作者
论文摘要
在奇异性发作之前,我们得出了表面扩散的独特性和稳定性原理。但是,扰动可以进行拓扑变化。主要成分是相对的能量不平等,这反过来依赖于(体积具有)梯度流量校准的明确构造。该证明适用于任何维度的固定解决方案,并在两个维度上的一般平滑解决方案中。
We derive a uniqueness and stability principle for surface diffusion before the onset of singularities. The perturbations, however, are allowed to undergo topological changes. The main ingredient is a relative energy inequality, which in turn relies on the explicit construction of (volume-preserving) gradient flow calibrations. The proof applies to stationary solutions in any dimension and to general smooth solutions in two dimensions.