论文标题

德林菲尔德的Hecke代数的两个类似狄拉克的运营商家族

Two families of Dirac-like operators for Drinfeld's Hecke algebra

论文作者

Calvert, Kieran

论文摘要

在本文中,我们为德林菲尔德的Hecke代数定义了狄拉克运营商的两个概括。一个概括,帕萨拉氏菌操作员继承了狄拉克不平等的概念。第二个概括,扭曲的狄拉克操作员使每个单一模块都必须具有非零扭曲的狄拉克共同体。一个开放的问题是,非零扭曲的狄拉克共同体是否可以确定类似于非零狄拉克共同体的事实的无限特征。对于$ a $ a $ hecke代数,我们给每个班级的运营商家族。

In this paper, we define two generalisations of Dirac operators for Drinfeld's Hecke algebra. One generalisation, Parthasarathy operators inherit the notion of the Dirac inequality. The second generalisation, warped Dirac operators are such that every unitary module must have a non-zero warped Dirac cohomology. An open question is whether non-zero warped Dirac cohomology can determine the infinitesimal character akin to the fact that non-zero Dirac cohomology does. For a type $A$ Hecke algebra we give a family of operators in each class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源