论文标题

Navier-Stokes的属性在亚临界空间中的温和解决方案,其规律性超过临界值,$ \ boldsymbol {ε\ in(0,1)} $

Properties of Navier-Stokes mild solutions in sub-critical Besov spaces whose regularity exceeds the critical value by $\boldsymbol{ε\in(0,1)}$

论文作者

Davies, Joseph P., Koch, Gabriel S.

论文摘要

我们考虑属于某些范围的Navier-Stokes初始值问题的温和解决方案$ Z_ { ^{n})))\ cap \ widetilde {l}^{\ infty}(0,t; \ dot {b} _ {p,q}^{s}^{s}(\ mathbb {r} Chemin-Lerner空间。 $ n = 3 $,$ε\ in(0,1)$和$ f \ in \ dot {b} _ {\ infty,\ infty,\ infty}^{ - 1+ε}(\ Mathbb {r}^{3}^{3}^{3}^{3}) $ u \ in \ cap_ {t'\ in(0,t_ {f,ε}^{*})} z _ {\ infty,\ infty,\ infty}^{ - 1+ε}(t',t',3)$具有最大存在时间$ {其中$φ$是用于定义Littlewood-Paley投影的截止功能。我们对此结果进行改进如下:对于$ n \ geq 1 $,$ε\ in(0,1)$,$ s \ in(-1,\ infty)$,$ p,q \ in [1,\ infty] $和初始数据$ f \ in \ dot {b} _ { $ u \ in \ cap_ {t'\ in(0,t^*_ f)} \ left(z_ {p,q}^{s}^{s}(t',t',n)\ cap z _ {\ infty,\ infty,\ infty,\ infty}^{ - 1+am}(t's) $ t_ {f}^{*} \ in(0,\ infty] $,独立于$ε,s,p,q $。如果$ t_ {f} {f}^{*} $是有限的$ {\ | u(t)\ |} _ {\ dot {b} _ {\ infty,\ infty}^{ - 1+ε}(\ Math bb {r}^{n})}} \gtrsim_φε(1-ε){(t_ {f}^{*} - t)}^{ - ε/2} $对于所有$ t \ in(0,t_ {f}^{*})$。 $ \ cap_ {t'\ in(0,t_ {f}^{*})} \ cup_ {α\ in(2,\ infty)} l^α(0,t'; l^{\ infty} $ u \ notin l^{2}(0,t_ {f}^{*}; l^{\ infty}(\ mathbb {r}^{n}))$。

We consider mild solutions to the Navier-Stokes initial-value problem which belong to certain ranges $Z_{p,q}^{s}(T,n):=\widetilde{L}^{1}(0,T;\dot{B}_{p,q}^{s+2}(\mathbb{R}^{n}))\cap\widetilde{L}^{\infty}(0,T;\dot{B}_{p,q}^{s}(\mathbb{R}^{n}))$ of Chemin-Lerner spaces. For $n=3$, $ε\in(0,1)$ and $f\in\dot{B}_{\infty,\infty}^{-1+ε}(\mathbb{R}^{3})$, Chemin and Gallagher (Tunis. J. Math., 2019) construct a local solution $u\in\cap_{T'\in(0,T_{f,ε}^{*})}Z_{\infty,\infty}^{-1+ε}(T',3)$ with maximal existence time ${T_{f,ε}^{*}\gtrsim_{φ,ε}{\|f\|}_{\dot{B}_{\infty,\infty}^{-1+ε}(\mathbb{R}^{3})}^{-2/ε}}$, where $φ$ is the cutoff function used to define the Littlewood-Paley projections. We improve on this result as follows: for $n\geq 1$, $ε\in(0,1)$, $s\in(-1,\infty)$, $p,q\in[1,\infty]$, and initial data $f\in\dot{B}_{p,q}^{s}(\mathbb{R}^{n})\cap\dot{B}_{\infty,\infty}^{-1+ε}(\mathbb{R}^{n})$, we prove that there exists a unique local solution $u\in\cap_{T'\in(0,T^*_f)}\left(Z_{p,q}^{s}(T',n)\cap Z_{\infty,\infty}^{-1+ε}(T',n)\right)$ which, along with its maximal existence time $T_{f}^{*}\in(0,\infty]$, is independent of $ε,s,p,q$. If $T_{f}^{*}$ is finite, then we have the blow-up estimate (with explicit dependence on $ε$) ${\|u(t)\|}_{\dot{B}_{\infty,\infty}^{-1+ε}(\mathbb{R}^{n})}\gtrsim_φε(1-ε){(T_{f}^{*}-t)}^{-ε/2}$ for all $t\in(0,T_{f}^{*})$. The solution is unique among all solutions in the larger class $\cap_{T'\in(0,T_{f}^{*})}\cup_{α\in(2,\infty)}L^α(0,T';L^{\infty}(\mathbb{R}^{n}))$, and if $T_{f}^{*}<\infty$ then $u\notin L^{2}(0,T_{f}^{*};L^{\infty}(\mathbb{R}^{n}))$. We also establish additional properties of the solution, depending on the Besov spaces to which the initial data belongs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源