论文标题
单参数Darboux成型的斐波那契数字
One-parameter Darboux-deformed Fibonacci numbers
论文作者
论文摘要
通过Faraoni和Atieh [对称性13,200(2021)]讨论的斐波那契序列的连续概括所满足的简单颂歌,对单参数的Darboux变形进行了影响,后者促进了与Flrw flrw同质共同体中弗里德曼方程的形式类似。该方法允许引入连续斐波那契序列的变形,因此darboux呈现的斐波那契数(非整数)数字。考虑到与参数振荡器方程相同的ODE,还讨论了这些序列的Ermakov-Lewis不变性。
One-parameter Darboux deformations are effected for the simple ODE satisfied by the continuous generalizations of the Fibonacci sequence recently discussed by Faraoni and Atieh [Symmetry 13, 200 (2021)], who promoted a formal analogy with the Friedmann equation in the FLRW homogeneous cosmology. The method allows the introduction of deformations of the continuous Fibonacci sequences, hence of Darboux-deformed Fibonacci (non integer) numbers. Considering the same ODE as a parametric oscillator equation, the Ermakov-Lewis invariants for these sequences are also discussed.