论文标题
随机步行和收缩元素II:翻译长度和准等级嵌入
Random walks and contracting elements II: Translation length and Quasi-isometric embedding
论文作者
论文摘要
继续从伴侣文章中进行:“随机步行和签约要素I:偏差不平等和限制法律”,我们研究了带有合同元素的度量空间的随机步行。我们证明,度量空间的等距组的随机亚组被准嵌入到空间中。我们从两种感觉上讨论了这个问题,即一种涉及随机步行,另一个涉及计数问题。我们还建立了收缩元素及其CLT及其相反翻译长度的通用性。
Continuing from a companion article: 'Random walks and contracting elements I: Deviation inequality and limit laws', we study random walks on metric spaces with contracting elements. We prove that random subgroups of the isometry group of a metric space is quasi-isometrically embedded into the space. We discuss this problem in two senses, namely, one involving random walks and the other involving counting problems. We also establish the genericity of contracting elements and the CLT and its converse for translation length.