论文标题
一种无监督的深度学习算法,用于量子气体显微镜中的单位点重建
An unsupervised deep learning algorithm for single-site reconstruction in quantum gas microscopes
论文作者
论文摘要
在量子气体显微镜实验中,重建具有高保真度的位置分辨晶格占用是准确提取物理可观察物的必不可少的。对于简短的原子间分离和有限的信噪比,此任务变得越来越具有挑战性。随着晶格间距的降低低于成像分辨率的一半,常见方法的性能迅速下降。在这里,我们提出了一种基于深度卷积神经网络的新型算法,以高保真地重建了现场分辨的晶格占领。该算法可以通过实验性荧光图像直接以无监督的方式进行训练,并可以快速重建包含数千个晶格位点的大图像。我们使用量子气体显微镜与带有剖宫产原子的量子气体显微镜基准,该量子原子利用晶格常数$ 383.5 \,$ nm,典型的瑞利分辨率为$ 850 \,$ nm。根据统计分析,我们在所有填充物中获得了有希望的重建保真度〜$ \ gtrsim 96 \%$。我们预计这种算法可以通过较短的晶格间距进行新颖的实验,提高低分辨率成像系统的读数保真度和速度,然后在相关实验中找到应用,例如捕获的离子。
In quantum gas microscopy experiments, reconstructing the site-resolved lattice occupation with high fidelity is essential for the accurate extraction of physical observables. For short interatomic separations and limited signal-to-noise ratio, this task becomes increasingly challenging. Common methods rapidly decline in performance as the lattice spacing is decreased below half the imaging resolution. Here, we present a novel algorithm based on deep convolutional neural networks to reconstruct the site-resolved lattice occupation with high fidelity. The algorithm can be directly trained in an unsupervised fashion with experimental fluorescence images and allows for a fast reconstruction of large images containing several thousand lattice sites. We benchmark its performance using a quantum gas microscope with cesium atoms that utilizes short-spaced optical lattices with lattice constant $383.5\,$nm and a typical Rayleigh resolution of $850\,$nm. We obtain promising reconstruction fidelities~$\gtrsim 96\%$ across all fillings based on a statistical analysis. We anticipate this algorithm to enable novel experiments with shorter lattice spacing, boost the readout fidelity and speed of lower-resolution imaging systems, and furthermore find application in related experiments such as trapped ions.