论文标题

使用快速嘈杂操作的高性能重复猫代码

High-performance repetition cat code using fast noisy operations

论文作者

Régent, Francois-Marie Le, Berdou, Camille, Leghtas, Zaki, Guillaud, Jérémie, Mirrahimi, Mazyar

论文摘要

由两光子驱动的耗散稳定稳定的骨猫量子,这是由于指数式抑制位叶片误差和一套保留此保护的大门。这些属性使它们成为有希望的硬件效率和耐故障量子处理器的构建块。在本文中,我们建议使用快速但嘈杂的CNOT门进行稳定器测量的重复猫代码架构的性能优化。这种优化导致了功绩的物理数字的较高阈值,这是玻色子模式的固有单光子损耗率与工程后的两光子损耗率之间的比率,以及低于所需开销阈值的非常有趣的缩放,以达到预期的逻辑误差率的预期水平。依靠用于CAT Qubit操作的特定误差模型,这种优化利用加速的低保真性CNOT门利用快速平价测量值,并结合了快速的Ancilla Parity-Check-Check-check Qubits。性能的显着增强是:1-具有对照(Ancilla)Qubit的主要成分(Ancilla)Qubits的高度不对称误差模型,以及2-在快速操作引起的泄漏的情况下,误差校正性能的鲁棒性。为了证明这些性能,我们开发了一种在电路级别噪声下采样重复代码的方法,该噪声还考虑了CAT量子状态泄漏。

Bosonic cat qubits stabilized by two-photon driven dissipation benefit from exponential suppression of bit-flip errors and an extensive set of gates preserving this protection. These properties make them promising building blocks of a hardware-efficient and fault-tolerant quantum processor. In this paper, we propose a performance optimization of the repetition cat code architecture using fast but noisy CNOT gates for stabilizer measurements. This optimization leads to high thresholds for the physical figure of merit, given as the ratio between intrinsic single-photon loss rate of the bosonic mode and the engineered two-photon loss rate, as well as a very interesting scaling below threshold of the required overhead, to reach an expected level of logical error rate. Relying on the specific error models for cat qubit operations, this optimization exploits fast parity measurements, using accelerated low-fidelity CNOT gates, combined with fast ancilla parity-check qubits. The significant enhancement in the performance is explained by: 1- the highly asymmetric error model of cat qubit CNOT gates with a major component on control (ancilla) qubits, and 2- the robustness of the error correction performance in presence of the leakage induced by fast operations. In order to demonstrate these performances, we develop a method to sample the repetition code under circuit-level noise that also takes into account cat qubit state leakage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源