论文标题
量子路径内核:深量子机学习的广义量子神经切线内核
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum Machine Learning
论文作者
论文摘要
构建经典深神经网络的量子类似物代表了量子计算中的基本挑战。一个关键问题是如何解决经典深度学习的固有非线性,这是量子域中的问题,这是因为一个任意数量的量子门的组成(由一系列顺序统一转换组成)本质上是线性的。在文献中,这一问题主要是通过引入单一转换层之间的测量来解决的。在本文中,我们介绍了量子路径内核,量子路径内核是量子机学习的一种表述,能够复制深度机器学习的那些方面,通常与经典领域中的出色概括性能相关,特别是分层特征学习。我们的方法概括了量子神经切线核的概念,该核心已用于研究古典和量子机器学习模型的动力学。量子路径内核利用参数轨迹,即,在训练过程中演变为模型参数所描绘的曲线,使差分层融合行为的表示,或形成层次参数参数依赖性,以预测器函数的梯度空间中的表现。我们对高斯XOR混合物分类的变体进行了评估 - 一种人工但象征性的问题,本质上需要多级学习才能实现最佳的类别分离。
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.