论文标题

几何真实多部分纠缠四量系统

Geometric genuine multipartite entanglement for four-qubit systems

论文作者

Mishra, Ansh, Mahanti, Soumik, Roy, Abhinash Kumar, Panigrahi, Prasanta K.

论文摘要

Xie和Eberly引入了一个真正的多部分纠缠(GME)测量“并发填充”(\ textit {phys。Rev.lett。,\ textbf {127},040403}(2021)(2021))用于三方系统。它被定义为一个三角形的区域,其侧长表示每个两分部分的平方并发。但是,最近已经表明,在LOCC下,同意填充不是单调的,因此不是忠实的纠缠量。尽管这不是忠实的纠缠措施,但它封装了对双方平方并发的优雅几何解释。已经有一些尝试将GME度量概括为四方及其他地区。但是,其中一些不是忠实的,而另一些则只是缺乏优雅的几何解释。 Xie等人的最新提案。构建一个并发四面体,其体积给出了四方系统的GME量;在该维度中,对四个多方的概括是单纯形结构的超量。在这里,我们通过构造表明,要捕获多部分纠缠的所有方面,不需要更复杂的结构,并且可以使用\ textit {2D几何}来证明四方纠缠。线性熵的Araki-lieb不等式的亚加热用于构建几何GME的直接扩展到四方几何形状,从而导致四方系统。我们的措施可以用几何解释为三个四边形的组合,其方面是由一到三分之三的一致的一致而导致的,而对角线则是两到两分之两的一致。

Xie and Eberly introduced a genuine multipartite entanglement (GME) measure `concurrence fill'(\textit{Phys. Rev. Lett., \textbf{127}, 040403} (2021)) for three-party systems. It is defined as the area of a triangle whose side lengths represent squared concurrence in each bi-partition. However, it has been recently shown that concurrence fill is not monotonic under LOCC, hence not a faithful measure of entanglement. Though it is not a faithful entanglement measure, it encapsulates an elegant geometric interpretation of bipartite squared concurrences. There have been a few attempts to generalize GME measure to four-party settings and beyond. However, some of them are not faithful, and others simply lack an elegant geometric interpretation. The recent proposal from Xie et al. constructs a concurrence tetrahedron, whose volume gives the amount of GME for four-party systems; with generalization to more than four parties being the hypervolume of the simplex structure in that dimension. Here, we show by construction that to capture all aspects of multipartite entanglement, one does not need a more complex structure, and the four-party entanglement can be demonstrated using \textit{2D geometry only}. The subadditivity together with the Araki-Lieb inequality of linear entropy is used to construct a direct extension of the geometric GME to four-party systems resulting in quadrilateral geometry. Our measure can be geometrically interpreted as a combination of three quadrilaterals whose sides result from the concurrence in one-to-three bi-partition, and diagonal as concurrence in two-to-two bipartition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源