论文标题

通过分解同源性对模块化函子进行分类

A Classification of Modular Functors via Factorization Homology

论文作者

Brochier, Adrien, Woike, Lukas

论文摘要

传统上,模块化函数被定义为与胶合兼容的表面组的投射表示系统的系统。它们可以正式地描述为模块化表面作业中央扩展的模块化代数,而代数的值则位于适当的对称的单体$(2,1)$ - 类别$ \ MATHCAL {S}线性类别的$。在本文中,我们证明了$ \ Mathcal {s} $中的模块化函子等于自我双重平衡的编织代数$ \ Mathcal {a} $ in $ \ MATHCAL {s} $(S} $(S} $)满足$ \ Mathcal {a} $;我们称之为$ \ Mathcal {a} $ connected。一个方向上的等效性是由零属限制提供的。我们的反等价构建完全是拓扑结构的,可以被认为是对模块化函子的构建的泛滥。为了验证实践中的连接性条件,我们证明它可以将其简化为属中的单个条件。此外,我们表明,$ \ Mathcal {a} $的可效应性(已知对模块化类别满足的条件)就足够了。因此,我们尤其是从lyubashenko中恢复了从(不一定是半神经)模块化类别的模块化函子的构造,并表明它取决于其零属的部分。此外,我们展示的模块化函子不是来自模块化类别的模块化函数,也不来自顶点操作员代数理论的大纲应用。

Modular functors are traditionally defined as systems of projective representations of mapping class groups of surfaces that are compatible with gluing. They can formally be described as modular algebras over central extensions of the modular surface operad, with the values of the algebra lying in a suitable symmetric monoidal $(2,1)$-category $\mathcal{S}$ of linear categories. In this paper, we prove that modular functors in $\mathcal{S}$ are equivalent to self-dual balanced braided algebras $\mathcal{A}$ in $\mathcal{S}$ (a categorification of the notion of a commutative Frobenius algebra) for which a condition formulated in terms of factorization homology with coefficients in $\mathcal{A}$ is satisfied; we call such $\mathcal{A}$ connected. The equivalence in one direction is afforded by genus zero restriction. Our construction of the inverse equivalence is entirely topological and can be thought of as a far reaching generalization of the construction of modular functors from skein theory. In order to verify the connectedness condition in practice, we prove that it can be reduced to a single condition in genus one. Moreover, we show that cofactorizability of $\mathcal{A}$, a condition known to be satisfied for modular categories, is sufficient. Therefore, we recover in particular Lyubashenko's construction of a modular functor from a (not necessarily semisimple) modular category and show that it is determined by its genus zero part. Additionally, we exhibit modular functors that do not come from modular categories and outline applications to the theory of vertex operator algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源