论文标题
与欧几里得的线性粘弹性定律的自动鉴定
Automated identification of linear viscoelastic constitutive laws with EUCLID
论文作者
论文摘要
我们将Euclid扩展到线性粘弹性,这是一种自动材料模型发现和识别的计算策略。在这种情况下,我们通过采用Prony系列表达的广义麦克斯韦模型并部署欧几里得进行识别来执行先验模型的选择。该方法基于四种成分:i。全场位移和净力数据; ii。一个非常广泛的材料模型库 - 在我们的情况下,Prony系列中的术语很大; iii。线性动量平衡约束; iv。稀疏性约束。设计的策略包括两个阶段。第1阶段依靠稀疏回归;它在数据上实施了动量平衡,并利用了促进性的正则化,以大大减少Prony系列中的项数并确定材料参数。第2阶段依靠K-均值聚类;从阶段1的减少术语组开始,它通过将麦克斯韦元素组合在一起,并以非常紧密的放松时间和相应的模量进行分组,从而进一步降低了它们的数量。提出了自动化的程序,用于选择第1阶段和第2阶段的簇数量的正则化参数。在不添加噪声的情况下,在人造数值数据上证明了总体策略,并有效,准确地证明了有效,准确地识别出在四个尺寸的五个级级的五个级数的范围内,在数量上,跨越了数百个阶段的时间,这些模型在五个级别上进行了五个阶段的范围。
We extend EUCLID, a computational strategy for automated material model discovery and identification, to linear viscoelasticity. For this case, we perform a priori model selection by adopting a generalized Maxwell model expressed by a Prony series, and deploy EUCLID for identification. The methodology is based on four ingredients: i. full-field displacement and net force data; ii. a very wide material model library - in our case, a very large number of terms in the Prony series; iii. the linear momentum balance constraint; iv. the sparsity constraint. The devised strategy comprises two stages. Stage 1 relies on sparse regression; it enforces momentum balance on the data and exploits sparsity-promoting regularization to drastically reduce the number of terms in the Prony series and identify the material parameters. Stage 2 relies on k-means clustering; starting from the reduced set of terms from stage 1, it further reduces their number by grouping together Maxwell elements with very close relaxation times and summing the corresponding moduli. Automated procedures are proposed for the choice of the regularization parameter in stage 1 and of the number of clusters in stage 2. The overall strategy is demonstrated on artificial numerical data, both without and with the addition of noise, and shown to efficiently and accurately identify a linear viscoelastic model with five relaxation times across four orders of magnitude, out of a library with several hundreds of terms spanning relaxation times across seven orders of magnitude.