论文标题
拓扑弦理论中的复兴,Stokes常数和算术功能
Resurgence, Stokes constants, and arithmetic functions in topological string theory
论文作者
论文摘要
将镜曲线量化到圆环calabi-yau三倍的量子产生了量子力学算子,其费米子光谱轨迹在普朗克常数中产生了分歧的功率序列。这些渐近扩张可以促进到复兴的跨系列。他们显示了无限的borel平面奇异塔和无限的许多理性stokes常数,这些常量是在以$ q $ series表示的封闭形式的生成封闭形式的功能中编码的。我们为在光谱理论的半经典限制中的局部$ \ mathbb {p}^2 $几何形状的第一个费米子光谱轨迹的复发结构提供了精确的解决方案,这对应于对应的拓扑字符串理论的强烈耦合方案,在猜想的TS/ST对应关系的同一背景上。我们的方法直接适用于拓扑字符串的双重弱耦合极限。我们将Stokes常数的封闭公式呈现为显式算术函数,而将扰动系数作为已知$ l $ functions的特殊值,而强度和弱字符串偶联常数的两个缩放态度之间的双重性在数字理论形式中出现。对本地$ \ Mathbb {f} _0 $几何形状的初步数值研究揭示了更复杂的重新发生结构,并具有对数亚领导的渐近学。最后,我们获得了适当的WKB双重尺度制度中费米子光谱轨迹的渐近行为的新分析预测,该预测由Nekrasov-Shatashvili限制中的精制拓扑字符串捕获。
The quantization of the mirror curve to a toric Calabi-Yau threefold gives rise to quantum-mechanical operators, whose fermionic spectral traces produce factorially divergent power series in the Planck constant. These asymptotic expansions can be promoted to resurgent trans-series. They show infinite towers of periodic singularities in their Borel plane and infinitely many rational Stokes constants, which are encoded in generating functions expressed in closed form in terms of $q$-series. We provide an exact solution to the resurgent structure of the first fermionic spectral trace of the local $\mathbb{P}^2$ geometry in the semiclassical limit of the spectral theory, corresponding to the strongly-coupled regime of topological string theory on the same background in the conjectural TS/ST correspondence. Our approach straightforwardly applies to the dual weakly-coupled limit of the topological string. We present and prove closed formulae for the Stokes constants as explicit arithmetic functions and for the perturbative coefficients as special values of known $L$-functions, while the duality between the two scaling regimes of strong and weak string coupling constant appears in number-theoretic form. A preliminary numerical investigation of the local $\mathbb{F}_0$ geometry unveils a more complicated resurgent structure with logarithmic sub-leading asymptotics. Finally, we obtain a new analytic prediction on the asymptotic behavior of the fermionic spectral traces in an appropriate WKB double-scaling regime, which is captured by the refined topological string in the Nekrasov-Shatashvili limit.