论文标题
线路缺陷为gaiotto-maldacena几何形状中的布雷恩盒
Line defects as brane boxes in Gaiotto-Maldacena geometries
论文作者
论文摘要
我们构建了一个$ \ text {ads} _2 \ times s^2 \ times s^2 $解决方案的新家族,用于IIA超级重力的解决方案,在最近在Arxiv中构建的班级中,具有4个supercharge用非亚伯t t二维作用:2107.12277。我们将重点放在本类中的特定解决方案上,将本地渐近为$ \ text {ads} _5 $ gaiotto-maldacena几何形状。该解决方案允许在4D $ \ MATHCAL {n} = 2 $ scft dual中进行线缺陷解释,我们将详细研究。我们表明,由D2-D4-NS5-F1 Branes的非平凡交集组成的缺陷Branes可以解释为4D $ \ MATHCAL {N} = 2 $ SCFT中的Baryon顶点,其反应引起了$ \ text {ads} _2 _2 $ solution。我们构建了将IR中流向双SCQM的显式箭量量子力学,并证明它可以嵌入与$ \ text {ads} _5 $ solution相关的箭量CFT中。 Quiver量子力学是由我们从$ \ text {ads} _2 $ solution构建的垂直NS5-BRANES之间的D2-Branes的Brane Box设置。我们提供对拟议二元性的非平凡检查。我们的构建提供了一个进一步的例子,说明非亚伯T偶对性对全息图的成功应用,在这种情况下,在$ \ text {ads} _2 _2 $ solutions,线路缺陷和brane盒之间提供了非常不平凡的连接。
We construct a new family of $\text{AdS}_2\times S^2\times S^2$ solutions to Type IIA supergravity with 4 supercharges acting with non-Abelian T-duality on the recent class constructed in arXiv:2107.12277. We focus on a particular solution in this class asymptoting locally to an $\text{AdS}_5$ Gaiotto-Maldacena geometry. This solution allows for a line defect interpretation within the 4d $\mathcal{N}=2$ SCFT dual to this geometry, that we study in detail. We show that the defect branes, consisting on a non-trivial intersection of D2-D4-NS5-F1 branes, can be interpreted as baryon vertices within the 4d $\mathcal{N}=2$ SCFT, whose backreaction gives rise to the $\text{AdS}_2$ solution. We construct the explicit quiver quantum mechanics that flows in the IR to the dual SCQM, and show that it can be embedded within the quiver CFT associated to the $\text{AdS}_5$ solution. The quiver quantum mechanics arises from a brane box set-up of D2-branes stretched between perpendicular NS5-branes, that we construct from the $\text{AdS}_2$ solution. We provide non-trivial checks of our proposed duality. Our construction provides one further example of the successful applications of non-Abelian T-duality to holography, in this case in providing a very non-trivial connection between $\text{AdS}_2$ solutions, line defects and brane boxes.