论文标题
随机流中的材料表面:运动和间歇性的积分
Material surfaces in stochastic flows: integrals of motion and intermittency
论文作者
论文摘要
我们考虑流体在固定的各向同性不可压缩的随机流中的线,表面和体积元素在$ d $维空间中,并研究其统计特性的长期演变。我们报告了一个$ d!-1 $随机的运动积分的家庭,从某种意义上说,它们的明确形式不取决于速度的统计数据。之前只讨论过其中一个。
We consider the line, surface and volume elements of fluid in stationary isotropic incompressible stochastic flow in $d$-dimensional space and investigate the long-time evolution of their statistic properties. We report the discovery of a family of $d!-1$ stochastical integrals of motion that are universal in the sense their explicit form does not depend on the statistics of velocity. Only one of them has been discussed previously.