论文标题
碎片和新颖的浮力动力学阶段
Fragmentation and Novel Prethermal Dynamical Phases in Disordered, Strongly-Interacting Floquet Systems
论文作者
论文摘要
我们探讨了如何在晶格模型中使用依次激活的跳跃模型中的疾病和相互作用,从而产生了新型的K体(或多体)局部相。具体而言,我们表明,当在[Wampler和Klich Arxiv:2209.09180]中考虑的一组相互作用的浮子模型中,在特殊点附近的参数空间中的区域中,类似经典的动力学出现的区域是稳定的,或者在某些情况下通过许多身体本地化而稳定了新的家族。我们还发现,这种无序系统在参数空间区域远离特殊的毒液点的区域中表现出新的阶段。此外,在清洁系统中发生希尔伯特空间碎片的参数空间中的区域(导致表现出冷冻动力学,细胞自动化和表现出表现出ergodic行为迹象的子空间的Krylov子空间)也可以通过疾病的添加来稳定。这导致了Krylov子空间内的外来动力学的出现。
We explore how disorder and interactions conspire in lattice models with sequentially activated hopping to produce novel k-body (or many-body) localized phases. Specifically, we show that when disorder is added to the set of interacting floquet models considered in [Wampler and Klich arXiv:2209.09180], regions in parameter space near the special points where classical-like dynamics emerge are stabilized prethermally (or via many-body localization in some cases) producing new families of interesting phases. We also find that this disordered system exhibits novel phases in regions of parameter space away from the special, Diophantine points. Furthermore, the regions in parameter space where Hilbert space fragmentation occurs in the clean system (leading to Krylov subspaces exhibiting frozen dynamics, cellular automation, and subspaces exhibiting signs of ergodic behavior) may also be stabilized by the addition of disorder. This leads to the emergence of exotic dynamics within the Krylov subspace.