论文标题
无序弹性量子自旋厅系统中的拓扑相变
Topological phase transition in disordered elastic quantum spin Hall system
论文作者
论文摘要
我们研究了疾病对二维(2D)机械系统中拓扑非平凡状态的影响。我们首先提出了一个基于面外弹簧质量模型的量子自旋大厅(QSH)绝缘子,并在拓扑和非平凡的系统中分析研究了该疾病与拓扑之间的相互作用。我们采用旋转指数来表征无序机械系统中的拓扑特性。通过跟踪疾病增加的自旋bott指数的演变,我们定量证明了该疾病从拓扑非平凡的QSH绝缘子到微不足道的绝缘子引起的过渡。然后,我们通过离散晶格中的瞬态分析来验证拓扑相变。最后,我们基于离散的弹簧质量模型设计了一个语音晶体,并在连续系统中沿着微不足道绝缘子和无序拓扑QSH绝缘子之间的边界验证了受拓扑保护的状态。这项工作迈出了一步,了解障碍在2D拓扑古典系统中的作用。
We investigate the effect of disorder on topologically nontrivial states in a two dimension (2D) mechanical system. We first propose a quantum spin Hall (QSH) insulator based on an out-of-plane spring-mass model and analytically study the interplay between the disorder and topology in both topologically trivial and nontrivial systems. We adopt the spin Bott index to characterize the topological property in disordered mechanical systems. By tracking the evolution of the spin Bott index with the increase of disorders, we quantitatively demonstrate the disorder induced transition from a topologically nontrivial QSH insulator to a trivial insulator. We then validate the topological phase transition through transient analysis in discrete lattices. Finally, we design a phononic crystal based on the discrete spring-mass model and numerically verify the topologically protected states along the boundary between the trivial insulator and disordered topological QSH insulator in a continuous system. This work puts a step forward in understanding the role of disorder in a 2D topological classical system.