论文标题
逆设计的尼橙色锂纳米光子学
Inverse-designed lithium niobate nanophotonics
论文作者
论文摘要
Niobate-On-on-noii(LNOI)是一个新兴的光子平台,它具有有利的材料特性(例如低光学损失,强非线性和稳定性),并实现了具有更强的光学限制的大规模集成,显示出对未来光学网络,量子处理器,量子处理器和非线性光学系统的希望。但是,尽管Photonics Engineering近年来通过优化进入了自动化的“反设计”时代,但LNOI集成光子设备的设计仍然主要依赖于直觉模型和效率低下的参数扫描,从而限制了无障碍参数空间,性能,性能和功能。在这里,我们开发并实施了针对LNOI平台拓扑优化的基于3D梯度的逆设计模型,该模型不仅可以有效地搜索大型参数空间,而且还考虑了实用的制造约束,包括最小特征大小和蚀刻的侧壁角度。我们在实验上证明了空间模式的多路复用器,波导交叉和紧凑的波导弯曲,所有这些都具有低插入损失,微小的足迹以及模拟和实验结果之间的良好一致性。这些设备与设计方法一起代表了朝着未来LNOI光子学所需的各种高级设备功能的关键步骤,并且可以为未来的光学链路,量子技术和非线性光学提供紧凑且具有成本效益的解决方案。
Lithium niobate-on-insulator (LNOI) is an emerging photonic platform that exhibits favorable material properties (such as low optical loss, strong nonlinearities, and stability) and enables large-scale integration with stronger optical confinement, showing promise for future optical networks, quantum processors, and nonlinear optical systems. However, while photonics engineering has entered the era of automated "inverse design" via optimization in recent years, the design of LNOI integrated photonic devices still mostly relies on intuitive models and inefficient parameter sweeps, limiting the accessible parameter space, performance, and functionality. Here, we develop and implement a 3D gradient-based inverse-design model tailored for topology optimization of the LNOI platform, which not only could efficiently search a large parameter space but also takes into account practical fabrication constraints, including minimum feature sizes and etched sidewall angles. We experimentally demonstrate a spatial-mode multiplexer, a waveguide crossing, and a compact waveguide bend, all with low insertion losses, tiny footprints, and excellent agreement between simulation and experimental results. The devices, together with the design methodology, represent a crucial step towards the variety of advanced device functionalities needed in future LNOI photonics, and could provide compact and cost-effective solutions for future optical links, quantum technologies and nonlinear optics.