论文标题
通过在原子bose-Einstein冷凝物中回声旋转纽扣来增强量子增强感测
Quantum enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate
论文作者
论文摘要
量子纠缠可以提供超出标准量子限制(SQL)的增强精度,这是可以通过经典手段实现的最高精度。但是,观察大大增强受到准备,维护,操纵和检测纠缠的实验能力的限制仍然很具有挑战性。在这里,我们提出了基于回声自旋 - 挤压挤压的非线性干涉指标方案,以实现原子玻色 - 因斯坦冷凝物中的高增强因子。回声是通过旋转螺旋挤压真空的状态叶片实现的,该真空充当探针状态,并将其重新聚焦回到未进行初始状态的附近,同时在编码信号的无噪声放大附近进行。观察到,在26400原子的两种模式SQL以及$ 16.6 \ pm1.3 $ db的敏感性$ 21.6 \ pm0.5 $分贝(db)中,在拉姆西干涉仪中进行相位感测。后者的绝对相位灵敏度应外推到$ 103〜 \ rm {pt/\ sqrt {hz}} $,以$ 18〜μ \ rm {m}^3 $的探针体积,用于近谐声微波场感测。我们的工作强调了自旋nematic挤压的出色多体一致性,并提出了其在原子磁力计,原子光学时钟和洛伦兹对称性违规等的基本测试等中可能使用的量子测量应用。
Quantum entanglement can provide enhanced precision beyond standard quantum limit (SQL), the highest precision achievable with classical means. It remains challenging, however, to observe large enhancement limited by the experimental abilities to prepare, maintain, manipulate and detect entanglement. Here, we present nonlinear interferometry protocols based on echoing spin-nematic squeezing to achieve record high enhancement factors in atomic Bose-Einstein condensate. The echo is realized by a state-flip of the spin-nematic squeezed vacuum, which serves as the probe state and is refocused back to the vicinity of the unsqueezed initial state while carrying out near noiseless amplification of a signal encoded. A sensitivity of $21.6\pm0.5$ decibels (dB) for a small-angle Rabi rotation beyond the two-mode SQL of 26400 atoms as well as $16.6\pm1.3$ dB for phase sensing in a Ramsey interferometer are observed. The absolute phase sensitivity for the latter extrapolates to $103~\rm{pT/\sqrt{Hz}}$ at a probe volume of $18~μ\rm{m}^3$ for near-resonant microwave field sensing. Our work highlights the excellent many-body coherence of spin-nematic squeezing and suggests its possible quantum metrological applications in atomic magnetometer, atomic optical clock, and fundamental testing of Lorentz symmetry violation, etc.