论文标题
grassmannian的cotangent束的量子量微分方程
Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian
论文作者
论文摘要
我们用cotangengent捆绑包的等效性K理论代数来描述grassmannian的cotangent束的量子束束的单构。此描述基于对量子量子差分方程的解决方案的超几何积分表示。我们将解决方案的空间与cotangent束的均值k理论代数的空间确定。特别是,我们表明,对于单型组的任何元素,其矩阵的所有条目都按照cotangent束的等效性k理论代数的标准为基础,均为laurent polyenemials在凸起的等效参数中具有整数系数。
We describe the monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian in terms of the equivariant K-theory algebra of the cotangent bundle. This description is based on the hypergeometric integral representations for solutions of the equivariant quantum differential equation. We identify the space of solutions with the space of the equivariant K-theory algebra of the cotangent bundle. In particular, we show that for any element of the monodromy group, all entries of its matrix in the standard basis of the equivariant K-theory algebra of the cotangent bundle are Laurent polynomials with integer coefficients in the exponentiated equivariant parameters.