论文标题
量子网络的自适应,连续的纠缠产生
Adaptive, Continuous Entanglement Generation for Quantum Networks
论文作者
论文摘要
量子网络可以使量子信息在长距离之间传输,并承诺在许多领域提供令人兴奋的好处和新的可能性,包括通信,计算,安全性和计量学。这些网络依靠远处节点的量子位之间的纠缠来传输信息。但是,创建这些量子链接并不取决于要传输的信息。研究人员探索了连续生成纠缠的方案,在收到用户请求之前,网络节点可能会在其中产生纠缠链接。在本文中,我们提出了一种自适应方案,该方案使用以前请求中的信息来更好地指导在收到以后的请求之前随机生成的量子链接的选择。我们分析了参数空间,其中这种方案可以提供收益,并观察到比单骨和自主系统网络上其他连续方案的性能高达75%。我们还测试了该方案的其他参数选择,并观察到持续的好处高达95%。在单骨拓扑结构上证明了我们自适应方案在随机请求队列中的功能。我们还探索了量子内存分配方案,其中延迟性能的差异意味着需要最佳的量子网络资源分配。
Quantum networks, which enable the transfer of quantum information across long distances, promise to provide exciting benefits and new possibilities in many areas including communication, computation, security, and metrology. These networks rely on entanglement between qubits at distant nodes to transmit information; however, creation of these quantum links is not dependent on the information to be transmitted. Researchers have explored schemes for continuous generation of entanglement, where network nodes may generate entanglement links before receiving user requests. In this paper we present an adaptive scheme that uses information from previous requests to better guide the choice of randomly generated quantum links before future requests are received. We analyze parameter spaces where such a scheme may provide benefit and observe an increase in performance of up to 75% over other continuous schemes on single-bottleneck and autonomous systems networks. We also test the scheme for other parameter choices and observe continued benefits of up to 95%. The power of our adaptive scheme on a randomized request queue is demonstrated on a single-bottleneck topology. We also explore quantum memory allocation scenarios, where a difference in latency performance implies the necessity of optimal allocation of resources for quantum networks.