论文标题
部分可观测时空混沌系统的无模型预测
Universal equation of state for wave turbulence in a quantum gas
论文作者
论文摘要
博伊尔(Boyle)的1662年观察到,在恒定温度下,气体的体积与压力成反比,提供了一个典型的示例,说明状态方程(EOS)如何可以简洁地捕获许多粒子系统的关键特性。现在,这种关系是平衡热力学的基石。在各种情况下,将热力学概念扩展到遥远的平衡系统在包括眼镜,主动物质和湍流在内的各种情况下引起了人们的极大兴趣,但通常是一个开放的问题。在这里,使用均匀的超电原子胶气体,我们通过实验构建一个EOS,用于湍流的物质波级联。在较大长度的连续强迫下,气体表现出非热但固定的状态,其特征是由尺度不变的动量空间能量通量维持的幂律动量分布。我们将动量分布的幅度和潜在的能量通量作为平衡状状态变量,这与不取决于能量注入或消散的细节或系统历史的EOS相关。此外,我们表明,可以将各种相互作用强度和气体密度的状态方程式相互缩放。这会导致通用的无量纲EO,该EO为该理论设定基准,也应该与其他湍流系统有关。
Boyle's 1662 observation that the volume of a gas is, at constant temperature, inversely proportional to pressure, offered a prototypical example of how an equation of state (EoS) can succinctly capture key properties of a many-particle system. Such relations are now cornerstones of equilibrium thermodynamics. Extending thermodynamic concepts to far-from-equilibrium systems is of great interest in various contexts including glasses, active matter, and turbulence, but is in general an open problem. Here, using a homogeneous ultracold atomic Bose gas, we experimentally construct an EoS for a turbulent cascade of matter waves. Under continuous forcing at a large length scale and dissipation at a small one, the gas exhibits a non-thermal, but stationary state, which is characterised by a power-law momentum distribution sustained by a scale-invariant momentum-space energy flux. We establish the amplitude of the momentum distribution and the underlying energy flux as equilibrium-like state variables, related by an EoS that does not depend on the details of the energy injection or dissipation, or the history of the system. Moreover, we show that the equations of state for a wide range of interaction strengths and gas densities can be empirically scaled onto each other. This results in a universal dimensionless EoS that sets benchmarks for the theory and should also be relevant for other turbulent systems.