论文标题

实验性量子计算化学与优化的统一耦合群集Ansatz

Experimental quantum computational chemistry with optimised unitary coupled cluster ansatz

论文作者

Guo, Shaojun, Sun, Jinzhao, Qian, Haoran, Gong, Ming, Zhang, Yukun, Chen, Fusheng, Ye, Yangsen, Wu, Yulin, Cao, Sirui, Liu, Kun, Zha, Chen, Ying, Chong, Zhu, Qingling, Huang, He-Liang, Zhao, Youwei, Li, Shaowei, Wang, Shiyu, Yu, Jiale, Fan, Daojin, Wu, Dachao, Su, Hong, Deng, Hui, Rong, Hao, Li, Yuan, Zhang, Kaili, Chung, Tung-Hsun, Liang, Futian, Lin, Jin, Xu, Yu, Sun, Lihua, Guo, Cheng, Li, Na, Huo, Yong-Heng, Peng, Cheng-Zhi, Lu, Chao-Yang, Yuan, Xiao, Zhu, Xiaobo, Pan, Jian-Wei

论文摘要

量子计算化学已成为量子计算的重要应用。杂交量子经典计算方法(例如变异量子本质层(VQE))已被设计为量子化学问题的有希望的解决方案,但由于理论上的复杂性和实验缺陷而引起的挑战阻碍了可靠和准确的结果。因此,用于解决电子结构的实验性工作仍然仅限于不可限制的(硬件有效)或经典模拟(Hartree-fock)Ansatz,或者限于一些误差较大的量子。可扩展和高精度量子化学模拟的实验实现仍然难以捉摸。在这里,我们解决了使用嘈杂的量子处理器求解分子电子结构的关键挑战。我们的协议在电路深度和运行时间以及化学模拟的关键指标上提供了显着改善。通过系统的硬件增强和误差缓解技术的集成,我们将实验性量子计算化学的限制推进了限制,并通过优化的单一耦合群集ANSATZ成功扩大了VQE的实现,以达到12码。我们为分子的地面能量产生高精度的结果,并抑制了两个数量级。在实验中,我们在所有债券距离上都达到了H $ _2 $的化学准确性,甚至在实验的小债券距离处,甚至超出了最近的两项并发工作。我们的工作展示了通往电子结构计算的可扩展解决方案的可行途径,验证了关键技术特征并确定了该目标的未来挑战。

Quantum computational chemistry has emerged as an important application of quantum computing. Hybrid quantum-classical computing methods, such as variational quantum eigensolvers (VQE), have been designed as promising solutions to quantum chemistry problems, yet challenges due to theoretical complexity and experimental imperfections hinder progress in achieving reliable and accurate results. Experimental works for solving electronic structures are consequently still restricted to nonscalable (hardware efficient) or classically simulable (Hartree-Fock) ansatz, or limited to a few qubits with large errors. The experimental realisation of scalable and high-precision quantum chemistry simulation remains elusive. Here, we address the critical challenges {associated with} solving molecular electronic structures using noisy quantum processors. Our protocol presents significant improvements in the circuit depth and running time, key metrics for chemistry simulation. Through systematic hardware enhancements and the integration of error mitigation techniques, we push forward the limit of experimental quantum computational chemistry and successfully scale up the implementation of VQE with an optimised unitary coupled-cluster ansatz to 12 qubits. We produce high-precision results of the ground-state energy for molecules with error suppression by around two orders of magnitude. We achieve chemical accuracy for H$_2$ at all bond distances and LiH at small bond distances in the experiment, even beyond the two recent concurrent works. Our work demonstrates a feasible path towards a scalable solution to electronic structure calculation, validating the key technological features and identifying future challenges for this goal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源