论文标题
在扭曲的空间上的共形Dilaton-higgs重力:重新审视黑洞悖论
Conformal Dilaton-Higgs Gravity on Warped Spacetimes: Black Hole Paradoxes revisited
论文作者
论文摘要
我们在randall-sundrum扭曲时空进行了调查,这是一个在形式的dilaton-higgs $(ω,φ)$重力模型中的Kerr样黑洞。我们使用$ \ mathds {z} _2 $ -Smmetry在“大”(大量)额外的维度上应用了抗虫边界条件。事实证明,伪里曼尼亚人5D歧管可以写成有效的4D riemannian brane spacetime,$ \ mathds {r}^2 _+\ times \ times \ times \ mathds {r}^1 \ times s^1 $,其中$ \ mathds {r}^2 _ _ _ _ _ _ _ _ _++$ conflast and polderm flat polderm flat plat plat lats plat plat。在两个歧管上有效的解决方案。因此,该解决方案可以通过Instanton解决方案同样很好地描述。一个优点是,在处理鹰辐射的蒸发过程的散射描述时,可以在没有“切割”方法的情况下保持抗焦性或依靠量子克隆。我们仅需要绕线数作为量子数。此外,在时间逆转下,方程是不变的。可以通过在Dilaton野外划分时空时,可以解决近水压近似和遥远的regge-wheeler近似的匹配条件的问题,可以解决一个“非物理”时空,这是完整的。在恒定计字段的情况下,我们发现拉格朗日中不变的质量项$ \simφ^2Ω^2 $直接从多余的dilaton方程中直接从额外的尺寸进行选择,从而使嵌入式的klein表面之间的关系在$ \ naters中提出了相关性。
We investigate on a Randall-Sundrum warped spacetime, a Kerr-like black hole in the conformal dilaton-Higgs $(ω,Φ)$ gravity model. We applied the antipodal boundary condition on the Klein surface using the $\mathds{Z}_2$-symmetry in the "large" (bulk) extra dimension. It turns out that the pseudo-Riemannian 5D manifold can be written as an effective 4D Riemannian brane spacetime, $\mathds{R}^2_+\times\mathds{R}^1\times S^1$, where $\mathds{R}^2_+$ is conformally flat. The solution in valid on both manifolds. So the solution can equally well described by an instanton solution. An advantage is that antipodicity can be maintained without a "cut-and-past" method or to rely on quantum cloning, when treating the scattering description of the evaporation process of the Hawking radiation. We need only the windingnumber as quantum number. Moreover, the equations are invariant under time reversal. The problem of finding the matching condition of the near-horizon approximation and the far-away Regge-Wheeler approximation, can possibly be solved by splitting the spacetime in a dilaton field times an "un-physical" spacetime, which is conformally flat. In the case of a constant gauge field, we find that the conform invariant mass term $\sim Φ^2ω^2$ in the Lagrangian follows directly from the superfluous dilaton equation by suitable choice of the scale of the extra dimension.Finally, we bring forward the relation between the embedded Klein surface in $\mathds{R}^4$ and the quantum mechanical information paradox.