论文标题
连接灰尘和化学演化:金牛座和珀尔修斯 - HCN,HNC及其C,N和H同位素的新碰撞率
Linking the dust and chemical evolution: Taurus and Perseus -- New collisional rates for HCN, HNC, and their C, N, and H isotopologues
论文作者
论文摘要
HCN,HNC及其同位素是无处不在的分子,可以用作化学温度计和进化示踪剂,以表征恒星形成区域。尽管它们在携带对恒星形成区域的化学和演变至关重要的信息方面的重要性,但过去某些分子的碰撞速率在过去尚未用于严格的研究。我们使用HCN,HNC的新碰撞速率及其同位素学对两个不同的恒星形成区域TMC 1-C和NGC 1333-C7进行了最新的气体和灰尘化学表征。我们研究了环境的可能影响和恒星反馈在其化学和进化中的影响。通过毫米观测,我们得出了它们的色谱柱密度,C和N同位素级分,同位比率和氘分馏。 3毫米和850 $ $ m的连续数据使我们能够计算发射光谱指数,并将晶粒生长作为进化示踪剂。 H $^{13} $ cn/hn $^{13} $ c比率与HCN的氘级分很反相关,因此它可以很容易地充当温度的代理。频谱指数$(β\ sim 1.34-2.09)$显示出一种暂定的反相关性,其中H $^{13} $ CN/Hn/hn $^{13} $ c比率表明进化,热且纯净的来源的谷物生长。与TMC 1-C不同,在NGC 1333-C7中观察到的尘埃温度和光谱指数的南到北梯度表明,主要NGC 1333云的反馈。通过对两个恒星形成区域的最新表征,我们发现化学和物理特性密切相关。尘埃温度,氘级分和光谱指数是互补的进化示踪剂。大规模的环境因素可能主导着聚类的星形区域的化学和演变。
HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 $μ$m allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. The H$^{13}$CN/HN$^{13}$C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index $(β\sim 1.34-2.09)$ shows a tentative anticorrelation with the H$^{13}$CN/HN$^{13}$C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions.