论文标题
自我修剪大规模领域的非线性稳定性。波浪klein-gordon模型
Nonlinear stability of self-gravitating massive fields. A wave-Klein-Gordon model
论文作者
论文摘要
近年来,在接近Minkowski时代的小型驱动性方案中,在全球演化问题上取得了重大进展。为了研究klein-gordon方程与爱因斯坦的田间方程之间的耦合,我们介绍了``欧几里得 - 杂胶状叶叶化方法'',该方法基于适应于曲线和klein-gordon-gordon方程的尖锐衰减估计的时空叶面的构造,并在凝聚型的速写阶段中进行了curved spacepertics。我们在这里概述了这种方法,并为波浪klein-gordon模型提供了完整的证明,该模型保留了爱因斯坦 - 玛特系统引起的一些主要挑战。
Significant advances were made in recent years on the global evolution problem for self-gravitating massive matter in the small-perturbative regime close to Minkowski spacetime. To study the coupling between a Klein-Gordon equation and Einstein's field equations, we introduced the ``Euclidean-hyperboloidal foliation method'', which is based on the construction of a spacetime foliation adapted to the derivation of sharp decay estimates for wave and Klein-Gordon equations in a curved spacetime. We give here an outline of this method, together with a full proof for a wave-Klein-Gordon model which retains some main challenges arising with the Einstein-matter system.